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Chapter 1

Introduction

Optical correlators are being found to be very useful in target recognition and

discrimination. Among various correlator designs, those which use discrete phase-only

filters are becoming very popular because they are easy to manufacture and can have

high recognition and discrimination power. The problem of designing an optimal filter

is nothing more than an optimization problem. Even though there exist a number of de-

terministic methods to design optical phase-only filters, the researchers have suspected

that solutions obtained from those methods are oftentimes local solutions (Kallman,

1990). This study investigates the application of a population-based, stochastic search

and optimization technique motivated by the natural principles called genetic algorithms

(GAs) to binary optical phase-only filter design. GAs were invented by John Holland

in 1965, and since then they have been applied to a number of different problem do-

mains including sciences, engineering, and business (Goldberg, 1989). Because of GA's

implicit parallelism and population approach, GAs are likely to find global solutions

quickly. There exist a number of other works (Calloway, 1991; Kim & Guest, 1989,

1990; Mahlab & Shamir, 1991a, 1991b, 1992) that used stochastic search methods like

genetic algorithms and simulated annealing in optical filter design; but this study applies

GAs in a more systematic way to a real-world military tank recognition and discrimi-

nation problem and compares the filters obtained using GAs with that obtained using

an existing deterministic method and using a hillclimbing method. The images used in

this study are all 128x 128, requiring a total of 16,384 binary decision variables. This

application is certainly one of the very largest-scale applications of GAs in real-world

problems.

In the remainder of this study, a formulation of the binary phase-only filter design
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problem is presented. In chapter 3, a brief description of the genetic algorithms and their

operators are outlined. In chapter 4, a hillclimbing method used as another optimizer

is described. Chapter 5 presents and describes simulation results on a single image

recognition and on multiple image recognition and discrimination problems. Chapter 6

suggests a number of avenues for further reseaich. A conclusion is drawn in chapter 7.
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Chapter 2

Binary Phase-only Filters

In this section, the principle of an optical correlator is outlined followed by the

iorm'uia ion of a binary phase-only filter.

2.1 Optical phase-only filters

Optical phase-only filters (as implemented in optical correlators) are used to rec-

ognize or discriminate a set of images. A schematic of an optical correlator is shown in

figure 2.1. The image is first sent through a collimator lens (C). Thereafter the image

is sent through a Fourier transforming lens (FFT1) and then passed through a desired

filter (F) that has an effect of changing the phase of the incoming images at desired

locations. The light is then sent through another Fourier transforming lens (FFT2) and

finally focussed into a correlator plane (P). If a bright spot in a fairly dark background

appears on the correlator plane, the filter is said to have recognized the image. Instead, if

only a dark background appears in the correlator plane, the filter is said to have rejected

the image.

2.2 Images

Traditionally, magnitude-only images are used to design optical filters (Bartelt &

Homer, 1985; Homer & Bartlet, 1985; Hester & Casasent, 1980; Homer, & Gianino,

1984a, 1984b; Kallman, 1986a, 1986b). Only recently, Kallman and Goldstein (1991)

have shown that phase-only images produce better signal-to-noise ratio compared to

magnitude-only images. In this study, we have considered only phase-only images.

3



C FFT1 F FF12 P

Figure 2.1 A schematic of an optical correlator.

When a detector receives an intensity image [a?-] on its active pixels, there is no

reason why a mapping [a?.] --+ [bij] can not be used to design a filter. In this study, we

digitize the intensity into 256 different phases and use the information as unit-magnitude

phase-only information. Specifically, we use the mapping bij = exp(a?,iri/255). This

mapping causes each pixel to have a unit magnitude and a phase in the range zero to lr.

This mapping is one-to-one. Elsewhere (Kallman & Goldstein, 1991), a similar mapping

was considered and was found to create filters with higher signal-to-noise ratio than

magnitude-only filters.

2.3 Formulation of filter design

The formulation of the filter design is described in detail elsewhere (Kallman,

1990). Here, we briefly describe the procedure.

For an image f, a complex-valued, discriminant function (filter) h is so designed

that the magnitude of (f, hp) is large for an object in f near p and is small for an object

anywhere else. To obtain such a filter, the following steps are usually used:

1. Input the image f

2. Use a lens to compute the Fourier transform of f, JF(f)

4



3. Multiply .F(f) by the filter .'(h)* using a spatial light modulator

4. Use a lens to compute the inverse Fourier transform, -- (1 F(f) .F(h)*), of the

above product

5. Use a detector to measure the intensity I (f, hp) 12.

A discriminant function h will be called a filter if the measured intensity in step 5 is

very large for places of interest and very small elsewhere.

To use these steps to design a filter numerically, let us consider that there are a

total of m images, of which first n(< m) are true images (images that are required to be

detected) and rest (from n+1 to m) are false images (images that are not to be detected).

In the following formulation, we require that at least one target is a true target. We also

consider that Bi is a small box of pixels in the correlation plane containing the origin

in the detector phase for each true image i. For a good filter, the measured optical

intensities corresponding to points in this box are larger compared to that outside the

box. For false images, we consider that Bi is empty. Let us also consider that RA is the

region of the correlation plane containing the detector face and Bi for all true and false

images, i. The signal-to-noise ratio of a discriminant function h is defined as follows:

SNR(h) = min!=2 maxsBi I (f, hp) 12

max[1 1 maxAp-B, I (f, hp) 12. (2.1)

The numerator is the minimum measured intensity of light in the region Bi in all true

images and the denominator is the maximum measure outside Bi in all true and false

images. In order for the discriminant function h to be a filter, the above SNR value must

be as large as possible. Ideally, we should have a filter for which the numerator is as

high as possible, and the denominator is as small as possible. This problem can be best

solved by transforming the above problem into a multicriterion optimization problem,

but in this study we use a single-objective optimization problem by maximizing the

above equation.
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It is interesting to note that for a single image, n = m = 1 and the above SNR

value reduced to the definition of a signal-to-clutter ratio used in radar.

Like a continuous matched filter, a continuous phase-only filter may be envisioned

with each .F(h)*(p) being a complex valued number of modulus one. Obviously, such a

filter is hard to build. The continuous filter can be approximated by building a discrete

k-state phase-only filter allowing only k different possible phase changes at each pixel

p. In this study, we choose k = 2 and design only binary phase-only filters. Thus, in

a binary phase only filter, each .F(h)*(p) can either be a 1, -1, or a 0 depending on

whether the desired phase change is 7r, zero, or indifferent.

Once the choice of R] and Bi has been fixed, the number of decision variables to

be used in the optimizer can be calculated. The images fi were supplied by the Wright

Laboratory Armament Directorate. In our study, the images are of size 128 x 128.

In all our simulations, we have chosen R] to be also the box 128 x 128. Thus, there

are a total of 16,384 binary decision variables. An optimal choice of Bi requires some

experimentation. We use a box of size 31 x 31 centered in the origin. This size was used

by Kallman (1987). Thus, the phase-only filter design problem reduces to finding 16,384

different binary values for which the calculated SNR value is maximum. It has been

found elsewhere (1986b) that making a few pixels zero near and including the origin in

the filter plane produces higher SNR values. As used in Kallman (1987), we make a box

of size 11 x 11 centered in the origin to take a value zero. Thus, the total number of

decision variables reduces to 16,384 - 121 or 16,263.
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Chapter 3

Genetic Algorithms

Genetic algorithms (GAs) are search and optimization procedures motivated by

natural principles and selection (Goldberg, 1989; Holland, 1975). Darwin's survival-

of-the-fittest principle along with structured recombination operators are applied iter-

atively on a population of strings representing the problem-variables to evolve better

populations. In this section, we briefly describe the mechanics of genetic algorithms

by first outlining GA operators and then briefly discussing why GAs work. Finally, a

new recombination operator is designed for solving the binary phase-only filter design

problem.

3.1 Representation

In order to apply GAs to an optimization problem, the decision variables are usu-

ally mapped and represented by a string (a chromosome) of binary alphabets (genes).

For problems with more than one decision variable, each variable is usually represented

by a substring, which are then concatenated together to form a bigger string. Even

though coding decision variables in binary is mostly used, there are some studies with

decision variables being coded with a higher cardinality alphabet (Grefenstette & Fitz-

patrick, 1985; Antonisse, 1989). There exist some studies where the decision variables

are coded in real numbers (Eshelman & Schaffer, in press; Wright, 1991).

A flow chart of the working of a simple GA is outlined in figure 3.1. A population

of strings is created at random. Each string is then evaluated. The evaluation procedure

first requires decoding of the decision variables from the string. Once the values of the

decision variables are decoded, they are used to calculate the objective function value,

7



which is used as a measure of the 'goodness' of the string. In GA's terminology, the

objective function value of a string is loosely known as the fitness of the string.

3.2 Operators

In a simple genetic algorithm, there are three main operators that are used to

modify a population of strings.

Reproduction (or selection) is an operator that makes more copies of better strings

in a population. There are a number of reproduction schemes in the GA literature (Gold-

berg & Deb, 1990). But there are two that are mostly used-proportionate selection and

tournament selection. In the proportionate selection scheme, a string is selected with a

probability fi/f..g, where fi is the fitness of the ith string and f.•9 is the average fitness

of all strings in the population. This indicates that a string with higher fitness value has

a higher probability of getting selected than a string with comparatively lower fitness

value. In a binary tournament selection scheme, two strings are selected at random and

the better string is chosen. If performed without replacement, this indicates that every

string in the population will be used in exactly two tournaments. The best string will

win both times; so it will get two copies. The worst string will loose both times; so it

will get no copies. In different selection schemes, there are fundamental differences by

which the number of copies are assigned, but the essential idea of a reproduction scheme

is that more copies are allocated to the string with higher fitness value.

After the reproduction phase is over, the population is enriched with good strings.

Reproduction makes clones of good strings, but does not create any new string. A

crossover operator is used to recombine two strings at a time to hopefully create a better

string. There exists a number of crossover operators in the GA literature (Booker, in

press; Spears & De Jong, 1991; Syswerda, 1989). A single-point crossover operator is

mostly used. Two strings are chosen at random for a crossover. A crossing site is chosen

8



Initialization
Evaluation
repeat

Reproduction
.Crossover
Mutation
Evaluation

until (termination criterion)

Figure 3.1 A flowchart of the working of a genetic algorithm.

at random. The contents in the left of the crossing site are swapped between the two

strings. There exists a number of variations of this crossover but the essential idea is to

exchange bits (information) between two good strings to desirably obtain a string that

is even better than the parents.

Another operator-mutation-is used sparingly. A bit is changed from one to

another at random. Under this operator, a 1 will change to a 0 and vice versa. Mutation

also creates a new string, but its effect is considered to be local. It introduces diversity

in the population whenever the population tends become homogeneous due to iterative

use of selection and crossover operators.

After new strings are created, they are evaluated by decoding and calculating the

objective function value. This completes a cycle of GA iteration. All three operators

are again applied to this population to create a new and hopefully better one. These

cycles (known as generations) continue until a termination criterion is satisfied.

3.3 Why do they work?

The selection of good strings in a population and random information exchange

among good strings are very simple and easy. But how do such simple and randomized

9



mechanisms make a successful search? Even though there is no rigorous mathematical

proof of convergence of GA search yet, some answer to this question is given in the liter-

ature (Goldberg, 1989; Holland, 1975) from a schema-processing point of view. Without

going into the details, it may suffice here to note that a schema represents a set of strings

with similarities in certain string positions. For example, a schema 1 0 * * * represents

all eight strings with having a 1 and a 0 in the first and second positions respectively.

A * denotes a don't care, meaning that it can take either a 1 or a 0. Holland (1975)

has argued that in one generation of a GA with n strings in the population, a total of

n3 schemata get processed in parallel. This implicit processing of such a large number

of schemata allows simultaneous schema competition among a large number of schema

partitions. It is in this aspect that the fundamental theorem of genetic algorithms is

hypothesized-low-order schemata combine to form high-order schemata. It is also be-

lieved that in order for schema processing, the GA operators may be such that the good

schemata (building blocks) grow in the population with generation. The survival and

continual growth of building blocks depends on a number of factors, including the coding

and genetic operators (Kargupta, Deb, & Goldberg, 1992; Radcliffe, in press; Vose, in

press).

3.4 GAs in binary filter design

In order to apply GAs to the binary phase-only filter design problem, we use a

representation scheme and a crossover scheme that respects the underlying building

blocks in that representation.

Since only binary phases are allowed, each decision variable is a 1 or a 0 depending

on whether the phase is 180 degrees or zero degrees. Since the images are of size 128 x 128,

there is a total of 16,384 binary decision variables in a string. This is in any standard

one of the largest-scale problems tried using GAs.
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Parent 1 Parent 2 Child 1 Child2
111111111111 000 000000 00 111100000011 0000 11111100
111 11111111 O00000000000 111100000 11 000011111100
111111111111 000000000000 1111000000 11 000011111100
1111111111 11 000ooo00001 1 11 111o0000O
111111111111 000000000000 000011111111 111100000000
111111111111 000000000000 0000 11111111 1111000000 00
111111111111 000000000000 0000 11111111 1111000000 00
111111111111 000000000000 1000 11111111 1111000000 00
111111111111 0000 00000000 1111111111 00 0000000011
111111111111 000000000000 11111111110 T 000000000011
111111111111 000000000000 1111 11111100 00000 00000 11
111111111111 0000 00000000 1111 11111100 0000 000000 11

Figure 3.2 A two-dimensional crossover operator used in the filter design.

It is not trivial to identify building blocks in such a problem and probably it

depends on the images used. But it is intuitive that building blocks constitute variables

that are geometrically close to one another. It is in this spirit that we design a crossover

operator that respects geometrically close variables. A similar crossover operator was

used elsewhere (Callaway, 1991) First, the string is arranged to form a two-dimensional

squared array of size 128. Two sites along both row and column are chosen at random.

This divides the total squared array into nine different rectangular regions. In one

crossover operation, each region is swapped among two mating strings with a probability

1/9. Only one region on average gets swapped between two strings. This crossover

operator is demonstrated in figure 3.2.

Mutation is performed as usual. With a small probability, a 1 is changed to a 0

and vice versa. The mutation probability is set so as to alter (on an average) a certain

number of bits in a string. For example, if five bits are desired to be changed on an

average, the mutation probability is set to 5/16384 or 0.00031.
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Chapter 4

A Hillclimbing Technique

In addition to using genetic algorithms for the design of binary phase-only filters,

a hillclimbing technique is also used. There exists a number of hillclimbing algorithms

for optimization (Ackley, 1987), but in this study we use a simple hillcimbing method.

The algorithm begins with a filter generated by binary approximation of a matched

phase-only filter. Starting from the top-left corner of the filter moving to the right, each

pixel is complemented (a 1 is changed to a 0 and vice versa). If the SNR value of the

new filter is better than the old filter, the new filter replaces the old filter and the bit

flipping is continued on the new filter. If, however, the SNR value of the new filter is

no better than the old filter, the subsequent bit flipping is continued on the old filter.

Once all pixels in the filter are considered, the bit flipping is continued from the top-left

pixel again. This procedure is terminated when for all pixels no bit flipping results in

an increase in SNR value. Figure 4.1 shows a pseudo-code for this algorithm.

Initial filter F;
repeat

index - 1; convergence - 0; Fnew - F;
repeat

Fnew[index] - Complement(F[index));
Evaluate Fnew;
if SNR(Fnev) > SNR(F) then

F [index] - Fnev [index];
convergence - convergence + 1;

else Fnew[index] - F[index];
index - index + 1;

until index - 16384;
until convergence - 0;

Figure 4.1 A pseudo-code for the hillclimbing algorithm.
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Chapter 5

Simulation Results

In this section, we discuss the simulation results of binary phase-only filter design

using genetic algorithms and using the hillclimbing technique described in previous sec-

tions. First, simulation results for a single image recognition are described. Thereafter,

simulation results for multiple image recognition and discrimination are described.

In all GA simulations described here, binary tournament selection is used. The

two-dimensional crossover operator described in the previous section is used and a sim-

ple mutation is used. All figures are plotted with an average of three independent

simulations1 , unless otherwise noted.

5.1 Single image recognition

To investigate how GAs perform on BPOF design, they are first applied to a single

image recognition problem. The target image is taken as the image at zero degrees

from the front of a M60 tank. This imagery was supplied by the Wright Laboratory

Armament Directorate at Eglin Air Force Base, Florida. The filter to be designed

consists of 128 x 128 binary phase-changes of zero or 7r. As discussed earlier, a small

box of 11 x 11 centered at the origin is excluded from varying. Thus, a string has a total

of 16,263 binary decision variables.

1In each run, a different random seed is used, whereas all GA parameters, like
population size, crossover and mutation probabilities, are kept fixed.
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5.1.1 Random initial population

In the first experiment, a random initial population of 100 is used. A crossover

probability of 0.8 is used. To maintain diversity, a mutation probability equivalent to

ten bit changes per string is used.

The best string (filter) at the initial population has a SNR value equal to 1.274

and after 100 generations (a total of 8,000 function evaluations) the string has a SNR

value equal to 9.188. A filter with a SNR value equal to 9.188 is not bad, considering

that in the initial population the best string has a SNR value equal to 1.274. Moreover,

this result is encouraging if the number of function evaluations is compared with the

total search space. With 16,263 binary decision variables, there are a total of 216263 or

4.47(104895) different filters possible. GAs only evaluated a tiny fraction of 2(10-412) of

the search space.

In order to compare this SNR value with that obtained using a continuous phase-

only matched filter, we use .F(h)* described in Kallman (1990). For a single image f, a

phase-only matched filter is designed as follows:

{ 0, if Y'(f)(p) = 0;
.=()*p (5.1)

f)l(p)1I -RA(f)(p) I, otherwise.

This construction sets the amplitude of each pixel to one. In order to make the com-

parison reasonable, the same small box of size 11 x 11 centered at the origin is set to

zero. Thus the filter is designed using equation 5.1 except for the small box centered at

the origin for which F(h)*(p) = 0. Using this construction, a filter is designed with a

SNR value as high as 272 for the same image considered above. Even though phase-only

matched filters are hard to build, such a high SNR is possible. When compared to this

value, the SNR obtained by the above GAs with random initial populations of size 100

is not so good. An earlier investigation reveals the following observations:

* Since the initial population is random and since the search space is large, it is

very unlikely to expect any underlying building block in the population.
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* A population size of only 100 is used. This population may be very small for

problem with strings of size 16,263. Elsewhere (Goldberg, Deb, & Clark, 1992),

a population sizing equation has been obtained for simple genetic algorithms.

For a correct decision making within GAs, a population size of 0(t) has been

suggested, where t is the string length. This suggests that in our problem a

population size of the order of ten to twenty thousand is required.

We have also observed in the binary phase-only design literature (Homer & Gian-

ino, 1984a, 1984b, 1985; Horner & Leger, 1985; Kallman, 1987, 1988a, 1988b, 1990) that

the initial filters used to drive various optimization algorithms are not random filters

but filters that are discrete versions of a matched filter. Starting from a good initial

point helps the search to converge to an optimal solution quickly. Moreover, if some

knowledge about the problem is known it does no harm to use that information in the

algorithm. Thus, we use an initial population of strings that are not random but a few

random mutations of a discrete version of the matched filter. But before we use this

initial population, we ran a GA with a random initial population of size 1,000 to see if

a better filter is found. The best filter in the initial population has a SNR value equal

to 1.821, and at the end of 100 generations the filter has a SNR value equal to 15.563.

Even though other GA parameters used in this simulation are not optimal in any sense,

we are somewhat convinced that the filters obtained from random initial population are

inferior compared to a matched filter. In subsequent simulations, we have always used

a knowledge-augmented initial population.

5.1.2 Knowledge-augmented initial population

For the single image recognition problem, the initial population is created by first

making a binary version of the matched filter. If the phase of the matched filter at any

pixel p is greater than zero and at most equal to 7r, .F(h)*(p) = 1 is assumed, otherwise

.F(h)*(p) = -1 is set. A population is created by flipping a certain number of bits at

15
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Figure 5.1 The south-to-north correlation plane view for a BPOF designed for an east-
facing M60 tank using genetic algorithms. The SNR value is as high as 274.39.

random. In all our simulations, we have flipped 128 bits at random.

An initial population of good filters reduces the fitness variance (Goldberg, Deb,

SClark, 1992). The population sizing eqiiation developed in that study indicates that

with reduced fitness variance the required population size may reduce drastically. In this

study, no effort is made to calculate the required population size in this type of problem.

In all our simulations, we use a population size of 1,000 unless otherwise stated.

GAs with a population size 1,000, a crossover probability of 1.0, and a mutation of

10 mutations per string are run on this filter design problem. The best filter in the initial

population has a SNR value equal to 109 and after 100 generations has a SNR value

equal to 274.39. This SNR is slightly higher than that obtained by a binary phase-only

matched filter. The south-to-north correlation plane view of this filter on the image

is shown in figure 5.1. It is important to note that this SNR value is obtained with

a reasonable set of parameter settings. A better filter may be designed with a better

setting of GA parameters.
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Figure 5.2 SNR values for the population-best filter in GA simulation, for the filter
obtained by the hillclimber, and for the phase-only matched filter are plotted versus the
number of function evaluations. The GA obtained a filter about 30% better than that
obtained by the hillclimber and is better than that of the phase-only matched filter.

To investigate how well GAs compare to a local search method, the hillclimbing

algorithm described in section 4 is used next. To make the comparison fair, the hill-

climbing method is started with the same binary version of the phase-only matched filter

used in GAs. The initial filter has a SNR value equal to 94.65 and at the end of the

simulation, the filter has a SNR value equal to 212.75. This value is about 22.5% lower

than that obtained by GA simulations. Figure 5.2 compares ,he SNR values obtained

by GA simulation, by a phase-only matched filter, and by the hillclimbing method. For

GA simulation, the SNR value for the population-best filter is shown. The figure shows

that the GA obtained a filter better than even the binary phase-only matched filter after

about 90,000 function evaluations.
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These simulation results show indications that the simple GAs may be used to

design better filters. As discussed earlier, these GA simulations were obtained with

reasonable values of the GA parameters. In the following, we perform a parametric

study to obtain better filters.

5.2 Parametric study

The important GA parameters are population size, crossover probability, mutation

probability, and the selection pressure. In all our simulations, the binary tournament

selection is used. Thus, the selection pressure for the best string is always two. In

the following parametric study, when one parameter is varied, other parameters are held

constant. In the simulations to follow, we first vary the mutation probability. Thereafter

we vary crossover probability and finally we vary the population size.

5.2.1 Mutation rate

Mutation is performed by altering a certain number of bits per string. We fix

the mutation probability in such a way that on average a certain number of bits are

changed per string. Specifically, we vary mutation rate so that 5, 15, and 20 bits get

mutated per string per generation. In all simulations, a population size of 1,000 and

a crossover probability of 1.0 is used. Even though these values may not be optimal,

later on we shall see that these values produce good filters. In all simulations, GAs are

run for 200 generations. An average of three runs are plotted. The SNR value of the

population-best string is plotted in figure 5.3 with the number of function evaluations

for three different mutation rates. The figure shows that a better filter is produced with

a smaller mutation rate. At the end of 200 generations, the best SNR value is found to

be 310, which is about 14% better than the matched phase-only filter. In the initial few

generations, GAs with all three different mutation rates perform equally well, but later
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Figure 5.3 The variation of SNR value with function evaluations for different values of
mutation rates. Better filters are produced with smaller mutation rates.

on GAs with smaller mutation rates produce a much better filter. In most GA studies, a

large crossover rate and a small mutation rate are used. Motivated by the above results,

we use five-bit mutations per string in subsequent studies.

5.2.2 Crossover rate

The two-dimensional crossover operator works by choosing two random sites both

along the row and column, dividing the filter plane into nine different regions and then

interchanging on average one of the regions between the two mating strings. Even

though we could vary the number of regions to be interchanged, in all our simulations

we held that constant. Instead we only vary the probability of crossover. Three different

crossover probabilities-0.8, 0.9, and 1.0-are used. For example, with a crossover

probability of 0.8, 80% of the population is used in the crossover operation. In all

simulations, a population size of 1,000 and a mutation rate of five bit-mutations per

string are chosen. The SNR value for the population-best filter is plotted versus function
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Figure 5.4 The variation of SNR value with function evaluations for different values of
crossover probabilities. A high crossover probability produces a better filter.

evaluations in figure 5.4. The figure shows that GAs with crossover probabilities of 0.8

and 1.0 perform slightly better than that of 0.9. But for all practical purposes, they all

perform equally well. The best filter found has a SNR value equal to 310, which is about

14% better than that of the matched filter.

5.2.3 Population size

Elsewhere (Goldberg, Deb, & Clark, 1992), a population sizing equation is devel-

oped to take into account the signal-to-noise ratio in the problem. The sizing equation

suggests that for problems of bounded difficulty, a population of size 0(t) is required,

where I is the problem length. That equation was developed to ensure that building

blocks of a certain signal-to-noise ratio would be detected with a certain probability in

the initial random population. According to this sizing, we need a population size on

the order of ten thousand, since our string length is 16,384. However, the population

sizing can be drastically reduced if a knowledge-augmented initial population is used.
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Figure 5.5 The variation of SNR values with the number of function evaluations for
different population sizing.

Even though that study did not account for population sizing in such a case, the reason

for reduction in population sizing is that in a knowledge-augmented initial population

building blocks are associated with small noise. In this study, we have used four different

population sizes-100, 500, 1000, and 2000. The crossover and mutation probabilities

are held fixed at 0.8 and five bit-mutations per string, respectively. The SNR value for

the population-best string is plotted in figure 5.5 versus generation number. It is clear

from the figure that GAs with a small population size of 100 have not been able to

find a better filter after a few thousand function evaluations. A better filter has been

found with a larger population size. By comparing results for population sizes of 1000

and 2000, we find that to obtain a similar performance more function evaluations are

required with a larger population size. In all our subsequent GA simulations, we use a

population size of 1000.
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5.3 Multiple image recognition

In the multiple image recognition problem, we use images of a M60 tank in five

different orientations for recognition and simultaneously use images of a Ml13 tank in

the same five orientations for discrimination. Three different sets of images are studied

here. First, five conseutive images are tried. Thereafter, five images at 5 degrees interval

are studied. Finally, nine images at 5 degrees interval are considered.

5.3.1 Consecutive images

For both M60 and M113 tanks, the images at 0, 1, 2, 3, and 4 degrees from the

front of the tank are considered. We consider the images of the M60 tank to be true

images, since they are used for recognition, and the images of the M113 tank to be false

images, since they are used for discrimination. The evaluation of the SNR value for a

binary filter is described in an earlier chapter. With five true and five false images, we

substitute n = 5 and m = 10 in equation 2.1. To reduce the required population size,

we use a knowledge-augmented initial population. Initial population is calculated in two

different ways. In the first approach, one-fifth of the population is created by mutating

a binary version of the matched phase-only filter corresponding to each true image. The

initial population is created by flipping 128 bits of this binary filter at random. In the

second approach, a binary filter is first created by averaging the matched phase-only

filters corresponding to all five true images. The initial population is then filled with

filters created by flipping 128 bits of this binary filter at random.

The hillclimber is used first. The initial filter is constructed by first calculating

the average of the matched phase-only filters of all five true images and then by creating

a binary filter from the average-matched phase-only filter. The SNR value of this initial

filter is found to be equal to 7.503. After 278,514 iterations, the hillclimber has found a

filter with a SNR value equal to 59.420. The variation of the SNR value with iteration
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Figure 5.6 The performance of the hillclimber and genetic algorithms on five consecutive
images.

number is shown in figure 5.6.

Genetic algorithms are applied next to this multiple image recognition problem.

The best parameter setting found for the single-image recognition problem are used

here. Even though the best parameter setting obtained for the single-image recogni-

tion problem may not be optimal for the multiple-image recognition problem, since the

characteristics of the two problems are the same, it is expected that similar parameter

setting would produce reasonable performance for multiple image recognition problem.

GAs with a crossover probability of one and five bit mutations per filter are used. A

population size of 1,000 is used in all cases. The initial population is created by ran-

domly flipping 128 bits of the binary version of the matched phase-only filter of each

of five true images. The best filter in the initial population has a SNR value equal to

12.105. The best GA run with three different initial populations found a filter at the end

of 200 generations with a SNR value equal to 52.167. Figure 5.6 shows that better filters

are found with more function evaluations. The SNR values obtained for M60 images at
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0, 5, 10, 15, and 20 degrees are 54.044, 79.511, 102.622, 77.804, and 52.167. The SNR

values obtained for the M113 images at 0, 5, 10, 15, and 20 degrees are 0.967, 0.956,

0.930, 1.042, and 0.961 only. The minimum of the maximum of I (f, hp) 12 inside the box

B obtained for five true images is found to be 5.430 and the maximum of the maximum

of I (f, hp) 12 outside B for five true images and all through R for five false images is

found to be 0.104.

Even though the hililimber finds a filter better than that obtained by GA sim-

ulation, it can be seen from figure 5.6 that the hilclimber has completely converged

to the obtained filter, whereas the performance of the GA is still improving. The GA

has been terminated sooner than its expected convergence time. Since no such analysis

exists in the GA literature to account for the expected convergence time, the GA has

been arbitrarily terminated at 200 generations. If possible, such analysis would involve

knowledge about underlying building block size, string length, population size, and un-

derlying scaling of the building blocks. In subsequent simulations, the GA has been run

for more generations.

When the initial population is created by flipping the binary version of the average

of the matched filters corresponding to five true images, the GA performs worse than

above. Thus, in all subsequent GA simulations, the initial population is created with

the former approach.

The filter obtained by using the GA has been used to find the SNR value for a few

other images. Figures 5.12 to 5.14 show that the SNR value for a true image reduces as

the orientation of the image varies too much from those considered in the design. For

the image at 5 degrees from the front of the tank the SNR value is 32.575, for the image

at 10 degrees from the front of the tank the SNR value is 6.749, and for image at 20

degrees from the front of the tank the SNR value is 2.174. For false images, these values

are 1.233, 2.146, and 0.582, respectively. Figure 5.15 shows how SNR value reduces as a

distant image is used for the filter generated using GAs. The obtained filter has not been
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able to discriminate true and false images that are very different than those used in the

design; but for images included in the design the obtained filter is able to discriminate

two tanks very well.

One of the reasons for achieving such high values of SNR is that the filter is

designed for consecutive images. Images that are only one degree apart from each other

are very similar. In the following subsection, we use five images that are five degrees

apart from each other.

5.3.2 Distant images

The true and false images are chosen from the same tanks; but now images at 0,

5, 10, 15, and 20 degrees from the front of the tank are used. The filters obtained using

the hillclimbing method and genetic algorithms are presented and compared with that

obtained by Kallman's method (1990).

We obtained a binary phase-only filter for these images obtained using Kaliman's

method from Dennis Goldstein of the Wright Laboratory Armament Directorate (Gold-

stein, 1992). The SNR value for these images is found to be 27.831. The minimum of

the maximum of I (f, hp) 12 inside the box B obtained for five true images is found to

be 4.067 and the maximum of the maximum of I (f, hp) 12 outside B for five true images

and all through R for five false images is found to be 0.146. We now use the hillclimber

and GAs to design filters for these images.

The initial filter to the hillclimber is calculated by creating a binary filter from an

average of the matched phase-only filters corresponding to the true images. The SNR

value of this filter is 9.105. The filter obtained by the hillclimbing method after 81,927

function evaluations has a SNR value equal to 36.524. The obtained filter has a SNR

value more than 30% better than that obtained using Kallman's method. The minimum

of the maximum of I (f, hp) 12 inside the box B obtained for five true images is found to

be 5.347 and the maximum of the maximum of I (f, hp) 12 outside B for five true images
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Figure 5.15 SNR values for images at different orientations with the BPOF designed by
genetic algorithms.

and all through R for five false images is found to be 0.146. When each of the true and

false images is used to find the SNR for this filter, they vary from 36.525 to 50.472. The

optical intensities corresponding to these images are plotted in figures 5.16 to 5.20. In

all cases, the obtained filter has been able to recognize the M60 tank and discriminate

it from the Ml13 tank on these images. The SNR values obtained for M60 images at

0, 5, 10, 15, and 20 degrees are 36.526, 50.473, 46.953, 45.461, and 36.588. The SNR

values obtained for the M113 images at 0, 5, 10, 15, and 20 degrees are 1.033, 0.999,

0.999, 1.056, and 1.059.

After achieving good results with the hillclimber, GAs are applied next. GAs

with a population size of 500, with crossover probability of 1.0, and five mutations per

filter, are used. The initial population is created by filling one-fifth of the population

by flipping 128 bits of each binary filter generated from the matched phase-only filter of

the true images. The best filter in the initial population has a SNR value equal to 6.158

and Ofter 300 generations the best filter has a SNR value equal to 28.425. This filter
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is marginally better than that obtained using Kaliman's method. The minimum of the

maximum of I (f, hp) 12 inside the box B (31 x 31 centered in the origin) obtained for

five true images is found to be 2.884 and the maximum of the maximum of I (f, hp) 12

outside B for five true images and all through R (128 x 128) for five false images is found

to be 0.101. In comparing this filter with that obtained using Kalhman's method, this

filter has a better SNR value with smaller minimum optical intensity for true images

inside B and simultaneously smaller maximum optical intensity for true images outside

B and for false images all through R. The SNR values obtained for M60 images at 0, 5,

10, 15, and 20 degrees from the front of the tank are 29.005, 43.942, 29.175, 29.932, and

29.691. The SNR values obtained for the M113 images at 0, 5, 10, 15, and 20 degrees

from the front of the tank are 1.015, 1.009, 1.104, 0.866, and 1.012 only. Figure 5.21

shows the comparison of tne performance of the hillclimber and genetic algorithms used

here. It is clear that the simulation results with GAs is still improving at the end of

150,000 function evaluations. Even though this filter is not as good as that generated

by the hillclimber, GAs are still creating better filters. Because of the resource and time

limitations, GA simulations are terminated at 300 generations. Figures 5.22 to 5.26

show the optical intensity at the correlation plane for all five true and false images for

the best filter found by genetic algorithms.

The filter obtained via the GA is now used to find the SNR value for images of

both tanks that are not used in the design. Images at two degrees from the front of the

tank are not used in the design of the above BPOF. Both images are used to find the

SNR value. For the M60 tank, the SNR value is found to be 6.033 and for the M113

tank, the SNR value is found to be 0.957. The optical intensities of both these images

are plotted from south to north direction in figure 5.27. The figure shows that even

though these images are not used in the design of the BPOF, the obtained BPOF is able

to very well discriminate images from M60 and Ml13 tanks. A few other images from

0 degrees to 20 degrees are used to find the SNR for the above filter; in all cases, the
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Figure 5.21 The SNR value of the best filter found by genetic algorithms and by the
hillclimber versus function evaluations on distant images.

obtained BPOF is able to discriminate images from the two tanks as well.

In order to investigate the robustness of the filter for images outside the range

of images used in the design, a few other images are also tried. Figure 5.28 shows the

optical intensities for M60 and Ml13 images at 25 degrees (recall that images at only

0, 5, 10, 15, and 20 degrees from the front of the tank are used in the design) from the

front of the tank. The obtained BPOF is able to discriminate the tanks as well. In the

case of M60 tank, the SNR value obtained is 8.769 and in the case of M113 tank, the

obtained SNR value is 1.387. However, it is observed that if images at orientation very

different than those used in the filter design are used, the obtained filter is not been able

to very well discriminate the tanks. Figure 5.29 shows the optical intensities of the two

tanks for images at 35 degrees from the front of the tank. The SNR values for M60 and

Ml13 tanks are 6.206 and 2.733 respectively. For images at 50 degrees from the front

of the tank, the obtained BPOF has SNR values equal to 2.679 and 1.857 for M60 and

M113 tanks respectively, as shown in figure 5.30.
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Even though these images are not used in the design, the filter found using GAs is able
to discriminate an M60 and an M113 tank.

The BPOFs found using GAs and the hillclimber are used to find the SNR value

for images at other orientations. Figures 5.31 and 5.32 show that the obtained filters

are not able to discriminate the tanks very well for images that are very different than

those images used in the design. But for the images that are covered by the images used

in the design, the obtained filters have been able to find a high SNR value. It is also

interesting to note that the filter obtained using distant images has a better range of

discriminating power than that obtained using consecutive filters (compare figures 5.15

and 5.31). For images used in the design, the latter has better SNR than the former, but

for images that are not used in the design, the latter has worse SNR than the former.

In the distant image case, the high SNR for images used for design has been sacrificed

for a better spread of good SNR values over other images.
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Figure 5.31 The SNR value calculated for images at various orientations using the filter
obtained using genetic algorithms.
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Figure 5.32 The SNR value calculated for images at various orientations using the filter
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5.3.3 Nine images

In the next experiment, nine true and nine false images are considered. In addition

to five images at 0, 5, 10, 15, and 20 degrees from the front of the tanks, four other images

at -5, -10, -15, and -20 degrees from the front of a tank are also included in the design.

Only one GA simulation is performed in this case. A GA with a population size of 500,

crossover probability 0.8, and five mutations per filter is used. The initial population is

created from binary approximations of the matched filters of the true images. The best

filter in the initial population has a SNR value equal to 1.794 and after 100 generations

the best filter has a SNR value equal to 10.152.

The history of the obtained SNR as varied with function evaluations shows that

the performance of GAs is improving with function evaluations. More simulations for

longer generations need be done to conclude the performance of GAs on these images.

Nevertheless, this experiment has shown that as more images are considered in the

design, the obtained SNR for the images considered in the design could be smaller. On

the other hand, as more images are considered in the design, the obtained filter has

better discriminating power for a wide range of images. This trade-off between the

recognition of images used in the design and discrimination of a wide range of images is

important in the design of optical filters, a matter to be discussed in the next chapter.
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Chapter 6

Extensions and future works

The simulations performed in this study have shown that GAs can be used to

design as good (if not better) filters as by the existing method. Because of time and

resource limitations, a number of investigations could not be accomplished. But this

study has shown evidence to justify further and immediate investigation of different

avenues of further research. In the following, a brief outline of possible future extensions

is presented, followed by a brief description of each of them.

1. Include more true and false images in the design

2. Design higher-state filters

3. Use images in noisy environment

4. Design filters for amplitude-only images

5. Use other GA parameter settings

6. Use parallel GAs

7. Use GAs to find optimal initial point in Kallman's method

8. Use faster FFT routine for BPOF design

9. Estimate population sizing for knowledge-augmented initialization

10. Investigate other hillclimbers for filter design

In this study, only five true and five false images are used to design filters. There

is definitely a tradeoff between the number of images used in the design versus the

performance (SNR) of the fiter on images. If more images are included in the design, the

recognizing ability of the filter will be weaker, but the filter would be able to discriminate
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more images. This also raises questions about how many images should be used for

optimal recognition and discrimination of images and how many filters may need to be

designed for each target. The number of images to be included in the design depends on

the acceptable SNR value required for the images under consideration. There should be

enough included that the filter is able to discriminate well among true and false targets.

The amount of computation is another concern. As the number of images increases, the

computation time to design filters increases.

The idea behind designing binary phase-only filters is that matched filters are

difficult to manufacture. But the binary approximation is probably the extreme dis-

cretization. Higher-state (four-state or 16-state) phase-only filters may be designed

using genetic algorithms. Kallman (1990) has shown that higher-state filters produce

filters with higher SNR values that that of binary filters. There are two methods by

which the filters can be coded using GAs. One method would be to code the filters with

higher-state alphabets. For example, in a four-state filter, each allele can take one of

four numbers (0, 1, 2, or 3) meaning the possible phase-changes of 0, 7r/2, 7r, and 37r/2.

Another method would be to have a binary coding with k bits for each choice. In the

above example, two bits may be reserved for the above four choices. Even though the

latter coding increases the string length, more schemata may be processed with binary

coding. For higher-state filters, hillclimbers may require more iterations to converge. It

remains to be seen how GAs would perform on higher-state filter design, and how they

would compete with hillclimbers and existing methods.

Usually the real-world images obtained from a radar or other tracking devices

are embedded in some kind of noise. Random noise can be added to these images to

simulate the noise effects on images and attempts made to design binary phase-only

filters using GAs and using the hillclimber used here. Oftentimes, images are used by

embedding them in a nonzero background. Usually a background with intensity equal

to the average of the target intensities is used. This study has shown how the designed
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filters perform on images that are not used in the design. These filters may be tried on

noisy or embedded images.

In this study, only phase-only images have been used because Kanlman and Gold-

stein (1991) have shown that phase-only images produce better filters. Amplitude-only

images or images with phase and amplitude information may be used to design filters

using GAs and the hillclimber descLbed in this study.

In this study, a number of GA parameters have been studied. There are a number

of other parameters that are not varied. For example, the type of crossover operator,

the probability of exchanging blocks of bits between two parents, the type of selection

operator, and the type of mutation operator are a few that were kept fixed. In a two-

dimensional string, the two-dimensional crossover operator used here seems reasonable

from the schema survival issue; however, other crossover operators may certainly be

possible. In all our simulations, only one (on average) block of bits out of nine created

by the two-dimensional crossover operator is exchanged. More exchanges in the crossover

operation may also be tried. In this study, only the tournament selection operator is

used, since the tournament selection does not have the scaling problem and has better

convergence characteristics unlike proportionate selection methods (Goldberg & Deb,

1991). Other selection methods may also be tried. In this study, only one-bit mutation

is tried. Other types of mutation operator like changing a number of bits simultaneously

may be used. Some problem related information may be used to design these operators.

Since the function evaluations take most of the computation time, a parallel

GA will be very suitable for this application. The tournament selection and the two-

dimensional crossover operator used here require only two strings. The mutation oper-

ator require only one string. Thus, the GA used here can be easily parallelized. With

sufficient processors, the SNR calculations may be performed in parallel and thus filters

can be designed in a short time.
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Instead of designing a filter with phases at each of 16,384 locations as variables,

GAs may be used to design a filter as in Kallman's method. Once the matched phase-

only filter is found, a suitable binary approximation of the matched filter may produce

an optimal binary phase-only filter. This approximation involves only one variable-a

point on the unit circle used as the boundary for choosing a phase change of 7r or not.

GAs can be used to find the optimal point on the unit circle. The filter obtained by this

method may then be compared with Kallman's filters and filters obtained by methods

of this study.

All the above extensions would be much easier and quicker to accomplish, if a faster

Fourier transform method is used. All simulations in this study have been performed on

a IBM Risc6000 system with a FFT routine (written in C) that takes about 0.3 sec for

Fourier transforming a 128x 128 complex array. Some of the GA and hillclimber runs

performed here took about a week to complete the simulation. A faster FFT code will

enable a faster investigation of the above studies in a shorter time.

Goldberg, Deb, & Clark (1992) developed an estimate for sizing an initial random

population in order to detect a certain signal-to-noise in a problem. If a knowledge-

augmented initial population is used, this sizing may be more than sufficient. To derive

a generalized sizing equation for knowledge-augmented initial population for any problem

may be difficult, but an attempt may be tried for this filter design problem. This will

require knowledge about the underlying building blocks-their size and their interaction

among each other-in the problem. It may be easier to use a small size problem to

investigate these aspects.

It is found in this study that the simple bit-by-bit hillclimber has performed as

well as the GA (sometimes better) and better than the existing method. A sophisticated

hillclimber (Ackley, 1987) may create even better filters. Instead of changing one bit at a

time, a number of bits may be changed at a time. Moreover, other hillclimbers-steepest

ascent, next ascent, and others-may also be tried.
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Chapter 7

Conclusions

In this study, binary phase-only optical filters have been designed using genetic al-

gorithms (GAs). GAs are stochastic search methods based on natural principles. Binary

phase-only filters are designed for detecting M60 tanks and rejecting M113 tanks, images

of which were supplied by the Wright Laboratory Armament Directorate at Eglin Air

Force Base, Florida. GA filters with tournament selection, a two-dimensional crossover

operator, and a simple mutation have been found as good as the filters obtained using

an existing method. A hililimbing technique is also used to design these fiters.

First, GAs have been used to design filters for recognition of a single image. A

parametric study has been performed to find better GA parameter setting for this prob-

lem. GAs have found a filter that is 14% better than the matched phase-only filter.

This parameter setting is then used to design filters for multiple image recognition and

discrimination problems. In one case, GAs found a fiter that is marginally better and

the hiliclimber found a filter that is 30% better than that obtained by an existing de-

terministic method.

The success of GAs and an hillclimbing technique used in this study opens a

number of doors for further research. These preliminary results suggest that GAs can

be successfully used to design better optical filters. The experiments have also shown

that GAs may require more function evaluations to achieve better filters. But this is not

a limitation in this problem. The filters are usually required to be designed before hand.

GAs bid very well to be a promising technique for optical filter design. More research

need be performed to investigate these claims. A number of future research topics in

that direction are also suggested.
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